自动控制系统集成应用

【Integrated application of automatic control system】

一. 基本信息

课程代码:【0080271】

课程学分:【4】

面向专业:【机电一体化 - 港航物流设备控制与维修管理(中高贯通5年制)】

课程性质:【专业基础课】

开课系部:【机电系】

使用教材: 主教材:《自动化控制系统集成综合训练》冶金工业出版社 向守均等编 2015年7月

参考教材:《西门子WinCC从入门到精通》作者: 主编 王前厚, 化学工业出版社 2017年3月

《触摸屏应用技术从入门到精通》 作者: 章祥伟 化学工业出版社 2017年1月

先修课程:【电工电子技术、机电传动控制、电气与 PLC 控制技术、自动控制基础】

并修课程:【传感器应用技术、单片机应用技术】

二. 课程简介

本课程是一门工程性综合实践类的专业课,旨在把与本专业相关的工程类技术结合起来,应用工程方法解决实际自动化工程系统的物理实现及应用,使学生系统地了解以工业控制计算机、PLC及其它自动化装置、工业控制网络、工业控制软件等为核心的现代工业自动化系统的基本组成与应用,着重介绍现代工业自动化控制系统(特别是全集成自动化系统)的具体应用。在了解并掌握电气传动控制、PLC和工业控制网络的基础上,通过具体的项目实例设计(系统选型、系统配置、设计图纸、控制程序等)及调试,学习掌握现代工业自动化系统的设计和应用方法。

本课程是在学习了与自动控制系统相关的基础课和专业基础课后,从自动化工程系统的角度学习自动 化控制系统的控制、集成方法,把本专业的理论方法应用到具体的自动化工程实践中。在本综合训练中, 学习各种自动化控制系统的基本原理和实现方法。课程涵盖的知识面较广,在理论上有相当深度,并直接 应用于工程实际,本课程强调培养面对工程问题的分析问题解决问题能力。

三. 选课建议

本课程适合机电一体化专业学生学习,要求学生具有电气与PLC控制、机电传动与控制、工业网络控制技术等专业课程基础知识。

四、课程与专业毕业要求的关联性

	专业毕业要求				
L01: 品德修养	拥护党的领导,坚定理想信念,自觉涵养和积极弘扬社会主义核心价值观,增强政治认同、厚植家国情怀、遵守法律法规、传承雷锋精神,践行八字校训,积极服务他人、服务社会、诚信尽责、爱岗敬业。	•			
L02: 专业能力	LO2-1:根据控制要求,能使用 SIMATIC Manager 管理器,组态西门子 S7-300 系列 PLC 自动控制系统,能根据工艺要求编写程序,并进行模拟仿真。	•			

	LO2-2: 根据控制要求,能使用 GX Developer 组态软件,组态三菱 FX 系列 PLC 自动控制系统,能根据工艺要求编写程序,并进行模拟仿真。)
	L02-3: 根据控制要求,能使用 STEP7 MICRO/WIN32 (SMART) 组态软件,组态 想西门子 S7-200 系列 PLC 自动控制系统,能根据工艺要求编写程序,并进行模拟仿真。)
	L02-4: 根据控制要求,能使用 WINCC 组态软件, 组态西门子 PLC 自动控制系)
	L02-5: 根据控制要求,能使用 WINCC (flexible) 触摸屏组态软件,组态西门子 PLC 自动控制系统,能根据工艺要求设计人机界面,并进行模拟仿真。)
	L02-6: 根据控制要求,能使用 EV5000 触摸屏组态软件,组态自动控制系统, 能根据工艺要求设计人机界面,并进行模拟仿真。)
L03:表达沟通	理解他人的观点,尊重他人的价值观,能在不同场合用书面或口头形式进行 有效沟通。)
L04:自主学习	能根据环境需要确定自己的学习目标,并主动地通过搜集信息、分析信息、 讨论、实践、质疑、创造等方法来实现学习目标。)
L05: 健康发展	懂得审美、热爱劳动、为人热忱、身心健康,耐挫折,具有可持续发展的能力。	
L06:协同创新	同群体保持良好的合作关系,做集体中的积极成员,善于自我管理和团队管理,善于从多个维度思考问题,利用自己的知识与实践来提出新设想。	
L07:信息应用	具备一定的信息素养,并能在工作中应用信息技术和工具解决问题。)
L08:国际视野	具有基本的外语表达沟通能力与跨文化理解能力,有国际竞争与合作的意识。	

五、课程目标/课程预期学习成果

本课程以制造型企业中的自动化设备 PLC 控制系统设计、调试、维修中、高级技术员等相关工作岗位能力为目标,通过本课程的学习,要求学生获得自动化设备设计、运行和维护方面的基本知识和技能,具体要达到的专业知识和能力目标是:

序号	课程预期学	细化的预期学习成果	教学与方法	评价方式
	习成果	(此列也可以不写)		
1	L01	遵守课堂纪律、学习态度端 正、积极参加课堂互动、独 立按时高质量完成作业、互 帮互学、与同学友爱相助、 抵制不良学风。	课程思政	课堂表现、学习态度

2	L02	1. 根据控制要求, 能使用 SIMATIC Manager 管理器,组态西门子 S7-300 系列 PLC 自动控制系统,能根据工艺要求编写程序,并进行模拟仿真。	课堂 PPT 分组研学 自学补充课外学 习 资 料 : S7-300PLC 课程精讲"第一、第二章。	掌握以下软件的安装方法,初步掌握 软件的使用方法: 1. 西门子 STEP7 V5. 3 (或 V5. 4-V5. 6) 编程软件; 2. 西门子 STEP7 Micro/Min SMART (或 STEP7 Micro/Min32)编程软件; 3. S7-200 Simulator 仿真软件; 4. 三菱 FX/WIN-C 编程软件; 5. 三菱 GX Developer 编程仿真软件;
		2. 组态 S7-300 项目 : 任务 1.5.4.1 三台电动机顺启逆停控制项目 任务 1.5.4.2 三相电动机自动正反转控制项目 任务 1.5.4.3 物料运输控制 系统项目	课堂 PPT 课堂 T D D D D D D D D D D D D D D D D D D	二、能使用 S7-300PLC、S7-200PLC、FX2N PLC 分别设计、组态并编写以下控制程序: 1. 任务 1. 3. 三相电动机运动方向控制系统; 2. 任务 1. 4 三相电动机的降压启动控制 xt; 3. 任务 1. 5 电动机制动控制系统。
		组态 S7-300 项目: 任务 1.6 物料制动混合控制项目 任务 1.7 自动送料装车控制项目	课堂 PPT 按宿舍分组研学 自学补充课外学 习 资 料 : S7-300PLC 课程精 讲"第三、第四章。	一、能使用相应仿真软件,对: 1. 任务 1. 3. 三相电动机运动方向控制系统; 2. 任务 1. 4 三相电动机的降压启动控制系统; 3. 任务 1. 5 电动机制动控制系统。进行仿真模拟。 二、使用 S7-300PLC、S7-200PLC、FX PLC 分别设计、组态并编写以下控制程序: 1. 任务 1. 6 物料制动混合控制项目; 2. 任务 1. 7 自动送料装车控制项目
		组态 S7-300 项目: 任务训练 1.7.4 大小球分类 传送控制项目项目 任务训练 1.8.4 电镀线生产 线控制	课堂 PPT 分组研学 自学补充课 外学习资料: S7-300PLC课程精 讲"第五、第六章。	一、能使用相应仿真软软对: 1. 任务 1.6 物料制动混合控制项目: 2. 任务 1.7 自动送料装车控制项目。 进行模拟仿真。 二、能使用 S7-300PLC、S7-200PLC、FX PLC 分别设计、组态并编写以下控制程序:

		1. 任务训练 1. 7. 4 大小球分类传送 控制项目项目 任务训练; 2. 1. 8. 4 电镀线生产线控制 三、能够仿真模拟训练 1. 任务 1. 7. 4 大小球分类传送控制 项目项目、任务 2. 任务 1. 8. 4 电镀 线生产线控制项目进行仿真模拟训练
组态 S7-300 项目: 饮料灌装线控制系统、编程及 模拟仿真(补充)	课堂 PPT 分组研学 自学补充课 外学习资料: S7-300PLC课程精 讲"第七、第八章。	一、 能够在在个人电脑上安装: 1. EV5000 人机界面(触摸屏)组态软件; 2. 西门子 WinCC flexible 2008 SP2(或 WinCC V6)触摸屏组态软件。二、自学"学习情境二"课外辅助学习资料。
学习情境二、变频器控制技术 及应用 任务 2.1. 变频器的任务训练 2.1.1 变频器面板结构与 操作 任务 2.1.2 变频器拆装操作 训练 任务 2.1.3 变频器基础操作 任务 2.1.4 变频器测量操作 任务 2.1.5 变频器功能参数 预置 任务 2.1.6 外部端子控制变 频器	课堂 PPT 分组研学	掌握 MM440 变频器的使用方法: 1. 复习 MM440 变频器的端子功能; 2. 复习"自动控制技术"课程实验指导书中实验六~实验八的内容; 3. 复习 P61 的表 2-1~表 2-4 内容.
任务 2.2 变频器在变速运行 控制系统中的典型应用 2.2.1 STEP7- 组 态 300PLCMM440 变频器控制系 统(端子控制)	课堂 PPT 分组研学	消化体会: 一、组态 S7-300-变频器模拟速度控制系统; 二、组态 S7-200-变频器端子速度控制系统;
2. 2. 2 STEP7 组 态 300PLCMM440 变频器控制系 统(模拟控制)补充内容 2. 2. 3 S7-200 PLC 模拟控制变 频器运行	课堂 PPT 分组研学	理解任务 7 PLC 模拟控制变频器运行项目的组态方法, 理解控制程序的编写方法
任务 2.3 变频器在工业网络中的应用 STEP7-组态 300PLCMM440 变 频器控制系统(PROFIBUS-DP 通信控制)	课堂 PPT 分组研学	理解任务 9 PLC 网络控制变频器运行项目的组态方法、读懂控制程序。
学习情境 3. 工业网络实训 任务 3. 1 MPI 网络实训 任 务 3. 2 现 场 总 线 PROFIBUS-DP 网络通信(任务 2. 3 MM440 变频器速度控制)	课堂 PPT 分组研学	一、完成学习情境三课外作业: 任务 8 PLC RS-485 通信控制变频器 运行操作与训练 二、预习学习情境 4 课外补充学习资料"WinCC Flexible"组态软件应用 技术。
学习情境 4 工业状态软件	课堂 PPT	一、复习理解学习情境 4 课外补充资

				,
		4.1 创建 WinCC 项目,组建一个内部变量	分组研学	料: 自学 WinCC 项目的创建步骤及方法
		4.2 WinCC Flexible 简介		
		4.2.1 WinCC Flexible 组态项	课堂 PPT	能够初步创建 WinCC 项目,组建一个
		目	分组研学	内部变量
		4.2.2 WinCC Flexible 的应用		
		4.3 EV500 触摸屏软件简介	课堂 PPT	了解 EV500 触摸屏项目的创建步骤
		4.3.1 EV500 组态项目	分组研学	及方法
		4. 3. 2 EV500 的应用	课堂 PPT	能够创建 EV5000 项目,组建一个内
		4. 3. 2 比 500 时 处 升	分组研学	部变量
		学习情境 5 电气自动化工程	课堂 PPT	能够使用 FX2N PLCF 组态、编写并仿
		项目控制系统集成	分组研学	真任务 5.3.1、5.3.2、5.3.3 三项
		5.3.1 组态任务 5.3.1 机械手		目的 PLC 控制程序。
		旋转过程的 PLC 控制项目		
		5.3.2 组态任务 5.3.2 步进电		
		动机限位正反转的 PLC 控制项		
		目		
		5.3.3 组态任务 5.3.3 步进电		
		动机运转过程的 PLC 控制项目		
		5.3.4 组态机械手整体控制项	课堂 PPT	能够使用 FX2N PLCF 组态、编写并仿
		目	分组研学	真任务 5. 3. 4、5. 3. 5、5. 3. 6、5. 3. 7、
		5.3.5 供料单元的 PLC 控制系		5.3.8、5.3.9 六项目的 PLC 控制程
		统项目		序。
		5.3.6 加工单元的 PLC 控制系		
		统项目		
		5.3.7 装配单元的 PLC 控制系		
		统项目		
		5.3.8 分拣单元的 PLC 控制系		
		统项目		
		5.3.9 输送单元的 PLC 控制系		
		统项目	VIII VII	
		组态任务 5.4 电镀生产线 PLC	课堂 PPT	能够使用 FX2N PLCF 组态、编写并仿
		控制系统	分组研学	真任务 5. 4 项目的 PLC 控制程序。
		电镀生产线 PLC 控制系统编程	课堂 PPT	能够使用 FX2N PLCF 组态、编写并仿
<u> </u>			分组研学	真任务 5.4 项目的 PLC 控制程序。
		电镀生产线 PLC 控制系统模拟	课堂 PPT	能够使用 FX2N PLCF 组态、编写并仿
		仿真	分组研学	真任务 5.4 项目的 PLC 控制程序。
		能用专业语言与用户沟通	要求规范作业、	提交课外学习笔记
3	L03		规范撰写布置	提交实验报告
			的课外学习笔	
			记和实验报告。	
4	L04	能根据自己的择业方向合	预习跨课程的	抽查课外实验准备学习情况
		理选读专业辅助读物	综合实验指导	
			书。根据实验要	
			求,课外完成建	
			模与编写程序。	
_	1.07	此夕冷尔 <u>协声</u> ++ +		
5	L07	能多途径检索技术文献,能	要求阅读不少	检查综合实验中关于 PLC A/D 与
		比较、分析的新技术新方	于3篇的课外辅	D/A 模块使用方法的检索材料;
		法,并能在工作中运用新技	助阅读资料。	抽查编写的实验程序。
		术新方法解决问题。		

六. 课程内容

学习情境 1 可编程控制应用技术(参考课时: 22 学时)

简要介绍工业自动化技术的概况、自动化控制系统的组成及发展趋势,以及自动化工程师的工程职业特点。重点介绍 GX-Simulator 仿真功能。

复习中职阶段学习过的 FX_{2N} PLC 基本指令及部分功能指令;简要介绍 S7-200 PLC 与 FX_{2N} PLC 在软硬件方面的特点及应用方面的区别。介绍 STEP7 Wicro/WIN32

学习情境 2 变频器片控制技术应用(参考课时: 10 学时)

作为卓越工程师应该掌握的工程技能,主要介绍变频器的工程应用技能。包括:变频器的拆装操作训练、变频器的基础操作训练、变频器的测量操作训练、功能参数预置操作训练、外部端子控制变频器运行操作训练、PLC 根据量控制变频器运行训练、PLC RS--485 通信控制变频器运行操作与训练、PLC 网络控制变频器运行操作训练 (学习情境 3)。

维修工程师的基本技能、自动化工程项目的一般流程及其技术特点,以及自动化工程的设计方法和 主要设计内容。

本单元难点:了解主要设计内容、掌握基本的设计方法。

学习情境 3 工业网络实训(8)

主要内容包括:

- 任务 3.1 创建并编辑 PLC 自动化项目
- 任务 3.2 仓储库存状态显示项目
- 任务 3.3 三相电动机运动方向控制
- 任务 3.4 三相异步电动机的减压启动控制
- 任务 3.5 电机制动控制电路
- 任务 3.6 物料自动混合控制
- 任务 3.7 自动送料装车控制
- 任务 3.8 电镀生产线控制

本单元难点:控制系统的硬件设计、抗干扰设计,如何看懂控制系统的电气原理图

学习情境 4 工业组态软件(参考课时: 10 学时)

主要介绍自动化控制系统的控制程序的设计方法和技巧,以及控制系统的集成环境,最后介绍一个设计实例。内容包括:

- 4.1 创建 WinCC 项目,组建一个内部变量
- 4.2 WinCC Flexible 简介
- 4.2.1 WinCC Flexible 组态项目
- 4.2.2 WinCC Flexible 的应用
- 4.3 EV500 触摸屏软件简介
- 4.3.1 EV500 组态项目
- 4.3.2 EV5000 的应用

学习情境 5 电气自动化工程项目控制系统集成(参考课时: 14 学时)

- 5. 3. 1 组态任务 5. 3. 1 机械手旋转过程的 PLC 控制项目
- 5. 3. 2 组态任务 5. 3. 2 步进电动机限位正反转的 PLC 控制项目
- 5.3.3 组态任务 5.3.3 步进电动机运转过程的 PLC 控制项目
- 5.3.4 组态机械手整体控制项目
- 5.3.5 供料单元的 PLC 控制系统项目
- 5.3.6 加工单元的 PLC 控制系统项目
- 5.3.7 装配单元的 PLC 控制系统项目
- 5.3.8 分拣单元的 PLC 控制系统项目
- 5.3.9 输送单元的PLC控制系统项目

组态任务5.4 电镀生产线PLC控制系统

5.4 组态电镀生产线PLC控制

5.4.1. 电镀生产线PLC控制系统编程

5.4.2. 电镀生产线PLC控制系统模拟仿真

七、课内实验名称及基本要求

实验 序号	实验名称	主要内容	实验 时数	实验 类型	备 注
1	集成环境练习	SIMATIC Manager 集成环境,简单练习	4	综合型	
2	控制程序设计	西门子 PLC 程序设计	4	综合型	
3	控制程序设计	三菱 PLC 程序设计	4	综合型	
3	工业网络控制 监控组态画面	西门子 PLC 网络控制及监控组态画面设计	4	综合型	

八、自主学习

自主学习包含: 指定的课外扩展阅读、预习任务、教师指导下的小组项目(任务)等。

序号	内容		预 计 学 生 学习时数	检查方式
1	指定课外扩展 阅读	 从网上自行收集相关自动化控制系统集成的资料; 从个人电脑上安装相应的组态、编程及其仿真软件; 阅读课外补充学习资料 	32	阅读笔记
2	预习任务	学习情境 1-4 基础内容预习	16	实验预习与提问
3	教师指导下的 小组项目	学习情境 5 工程项目设计、编程及 模拟仿真	16	仿真报告

九、考核方式及成绩评定

构 成 (1+X)	考核项目及内容	评价方式	占比
1	期末考试(全部内容)	开卷考试	50%
X1	作业	批改	20%
X2	仿真模拟	实验报告	20%
Х3	测验成绩+课堂互动	批改	10%

撰写人: 汤以范 审核时间: 2023.8 系部主任审核签名: 蔣忠理